Ogbu Celestine Ogbu

19.03.25

Introduction to View Transitions.

What are View Transitions?

Definition: View transitions refer to animations or effects that happen
when switching between different states or views in a web application.

Purpose: View Transitions are a way to make websites look smoother
and more polished when you move from one page to another or when
something on the page changes (like a list updating). Instead of things
just popping in or out suddenly, the browser can create nice
animatlions, like fading and sliding to make the change feel more
natural.

Do they matter? Yes.

View Transitions boost user engagement and enable applications
appear more modern and professional.

e / A e o

How it works

Imagine you're looking at a photo gallery. When
you click on a photo to make it bigger, the browser
can take a snapshot of the small photo, then
smoothly animate it to the larger version. View
Transitions help the browser handle these
animations automatically, so that developers don't
have to write a lot of complicated codes.

~—Another example: =

Imagine a to-do list app. When you check off an item,
instead of it just disappearing, it could fade out
smoothly. Or when you open a new page, the old page
could slide out while the new one slides in. These are
the kinds of effects View Transitions make easy to
create.

View Transitions make the web feel more fun to use!

Why Itis Cool

Better Experience: Websites feel more like apps,
with smooth, fancy animations.

Easier for Developers: Instead of spending time
creating animations from scratch, developers can
use built-in tools to make things look good.

Works Everywhere: Once all browsers support it,
websites will look consistent no matter what
device or browser you use.

"

Types of View Transitions

CSS-Based Transitions: basic animations using CSS properties
such as transition and transform. Example: Gradually fading in a
new view.

JavaScript-Driven Animations: advanced animations using
libraries like GSAP or Anime.js. Example: Custom animations for
specific user actions.

View Transitions API: a modern API(Application Programming

Interface) designed to simplify transitions between DOM
(Document Object Model) changes.

Example: Smooth transitions between pages in single-page
applications (SPAs).

— "’“/7-

Enabling automatic transitions

* The CSS @view-transition rule with the navigation:
auto; property is used to trigger automatic view
transitions for navigations within a web application:

» @view-transition {
navigation: auto;

/

-——‘_\m«-wm

_»-@view-transition at-rule defines the view
transition settings.

Navigation: auto; triggers automatic view
transitions when a user navigates from one page to
another, the browser automatically applies a
transition effect between both pages thereby
creating a smooth transition.

The duration of the transition can be customised
to make it slower:

@view-transition { navigation: auto; } /* Customize the
transition */ ::view-transition-old(root), ::view-transition-
new(root) { animation-duration: 1s; }

— "’“/7-

Advantages of View Transitions

* Improved User Experience

» Makes applications feel more responsive and
interactive.

* Clear Visual Feedback

* Simplified Navigation

» Helps users follow the flow of the application more
easily.

-

How will VT change the web?

Faster and smoother websites. Example, a photo
gallery with smooth transitions appears faster and
more responsive.

More engaging websites — users will be more
interested and engaged with a more dynamic and
interactive websites. Example, a shopping site with a
smooth animated shopping cart when you click on
them.

Better user experience with a smoother and polished
website, example, a seamless transition between pages.

"

Can we use VT now?

Yes, but only in some browsers (like Chrome and
Edge). Other browsers (like Firefox and Safari) are still
catching up. If you're building a website, you can use

View Transitions in supported browsers and provide a
simpler experience for others.

/ ’
L eee——

-Challenges and Considerations

Performance:

Complex animations may affect performance,
particularly on lower-end devices.

Accessibility:

Ensure transitions do not create barriers for users with
disabilities.

Browser Compatibility:

Not all browsers currently support the View
Transitions API.

Best Practices

Simplicity is vital:

Avoid complicated animations that may distract or
confuse users.

Cross-Device Testing:

Ensure transitions work smoothly across various
devices and screen sizes.

Fallback Options:

Provide alternatives for browsers that do not support
the View Transitions API.

Real-World Applications

Single-Page Applications (SPAs):
Smooth transitions between sections or pages.
» E-Commerce Platforms:

Animations when adding items to the cart or
navigating product pages.

Social Media Sites:

Transitions for actions like liking, commenting, or
sharing posts.

Disabling view transitions tor USELS

“who prefer reduced motion

» To create an accessible website for all users, use the
following code for those who prefer reduced motion:

» @media (prefers-reduced-motion) {
::view-transition-group(*),
::view-transition-old(¥),
::view-transition-new(*) {
animation: none important;

/
/

e / : P

Conclusion

Summary:

View transitions are a powerful way to enhance user
experience.

They can be implemented using CSS, JavaScript, or the
View Transitions API.

Final Thoughts:

When used effectively, view transitions can make web
applications more engaging and user-friendly.

e / : P

References

https://developer.mozilla.org/en-
US/docs/Web/CSS/transition

https://developer.mozilla.org/en-US/play
https://www.patterns.dev/vanilla/view-transitions/

https://developer.chrome.com/docs/web-
platform/view-transitions/same-document

